OCR Additional Maths Exam Questions - Binomial Expansion

2 Expand $(1-x)^{12}$ in ascending powers of x up to the term in x^{3}, and simplify your answer.

13 (i) Find the coefficients a, b and c in the expansion

$$
\begin{equation*}
(2+h)^{3}=8+a h+b h^{2}+c h^{3} . \tag{3}
\end{equation*}
$$

(ii) The graph of the equation $y=x^{3}$ passes through the points P and Q which have x-coordinates 2 and $2+h$ respectively.
Show that the gradient of the chord PQ is $\frac{(2+h)^{3}-8}{h}$.
(iii) Express $\frac{(2+h)^{3}-8}{h}$ as a quadratic function of h.
(iv) As the value of h decreases, the point Q gets closer and closer to the point P on the curve. As h gets closer to 0 the chord PQ gets closer to being the tangent to the curve at P .

Deduce the value of the gradient of the tangent at P.
(v) Kareen uses the same method to deduce the value of the gradient of the tangent at the point $(2,16)$ on the curve $y=x^{4}$.

The first three lines of her working are given below and in the answer booklet.
Take P to be the point $(2,16)$
Take Q to be the point $\left(2+h,(2+h)^{4}\right)$
The gradient of the chord $P Q$ is given by $\frac{(2+h)^{4}-16}{h}=$

Complete Kareen's working.

6 (i) Expand $\left(x-\frac{1}{x}\right)^{4}$ using the binomial expansion. Show all your working.
(ii) Explain why the substitution $x=1$ will help to justify your answer.

